Reg. No. :

$\left(\begin{array}{c} \mathbf{G} \ \mathbf{0402} \end{array} \right)$

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2010 THIRD SEMESTER ELECTRONICS COMMUNICATION ENGINEERING

EC1201 DIGITAL ELECTRONICS

(REGULATION 2008)

Time : Three hours

Maximum: 100 marks

Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$

1. State DeMorgans laws.

2. Simplify $A + \overline{AB}$ using Boolean algebra.

3. Draw a 2-input CMOS NAND gate.

4. List out the drawbacks of ECL logic family.

5. Draw a full adder circuit using two half adders and suitable gates.

6. Realize $F = \sum m(0,1,3,5,7)$ using a 4×1 multiplexer.

7. Design a Mod-4 asynchronous counter using JK flipflops.

8. Distinguish between Moore Machine and Mealy Machine.

9. What should be the size of a ROM to produce the square of a 3-bit input?

10. Define the term memory access time.

PART B -- $(5 \times 16 = 80 \text{ marks})$

11. Implement $F = \overline{(A+B)(C+D)} + A$ using NAND gates only and NOR gates only. (16)

Or

12. Reduce the expression $F = \sum m(1,5,6,12,13,14) + d(2,4)$ is SOP and POS forms. (16)

pression. OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

13. Explain the working of a 2-input TTL NAND gate with TOTEM POLE output.

(16)

° Or

14.	Discuss in detail about the various specifications for a digital Integrat circuit.	ed .6)
15.	Design a 4 bit BCD to 4 bit gray code converter. (1	.6)
	Or	
16.	(a) Explain the working of a carry look ahead adder. (1	.0)
	(b) Design a 4 to 2 line priority encoder circuit.	(6)
17.	Design a 2 bit up/down counter using T flip flops. Implement usi synchronous design. (1	ng .6)
	Or	
18.	Determine minimal state table using partitioning technique.(1)PresentNext stateOutput ZStateX=0X=1S1S1, 1S1, 0	.6)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 9 .	(a) Explain structure of a PROM.	(8)
	(b) Write short notes on RAM.	(8)

Or

20. Explain in detail about static RAM cell.

G 0402

(16)

2